
Adaptogens

Wellness Wednesdays 12/4/19 – Aspen, CO Dr. John Hughes, DO

Adaptogens

- Increase the resistance to stress
- Decrease sensitivity to stressors (stress protection effect)
- Stimulate the body's overall physiology
- Limit fatigue
- All of the above create "heterostasis" a condition of the body better adapted than normal homeostasis

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991026/

Popular Adaptogens and their Pharmacological **Fffects**

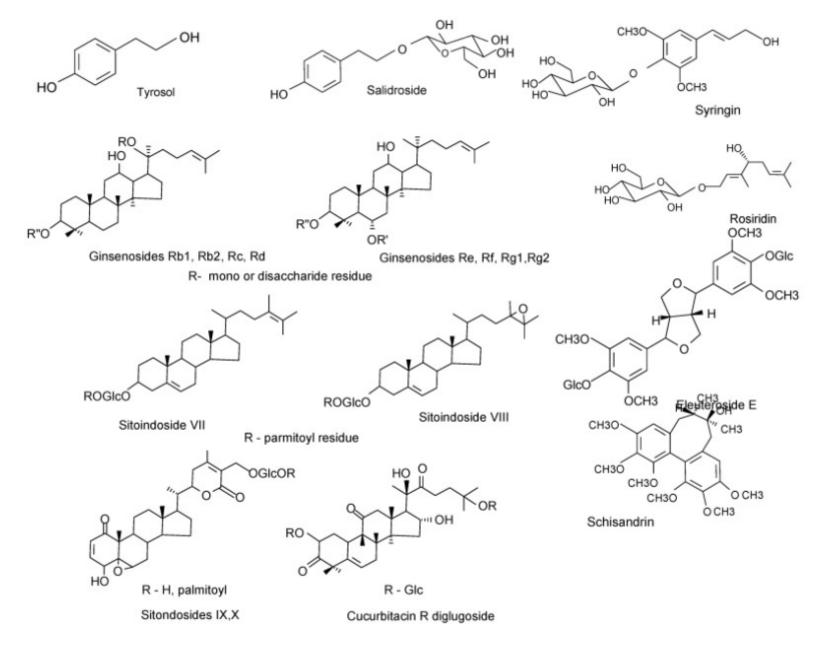
Pharmacological profile of adaptogens: summary of in vitro or in animal studies.

Regulatory System: effect	Pharmacological Effects		Rhodiola	Eleutherococcus	Schisandra
Stress-system (neuro-endocrine- immune complex): Anti-stress/stress- mimetic/ stress- protective	CNS-stimulating: enhancing of physical performance, cognitive performance (learning and memory)	+		+	+
	Neuroprotective	+			+
	Hepatoprotective	+		+	+
	Cardioprotective	+			+
	Gastroprotective			+	+
	Oxidative stress/Radioprotectiv e	+		+	+
	Anti-atherosclerosis			+	+
	Vasodilatatory/hypot ensive				+
	Anti-hyperglycemic			+	
	Anti- inflammatory/allergy Immunotropic			+	+
	Antidepressive	+		+	+

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991026/

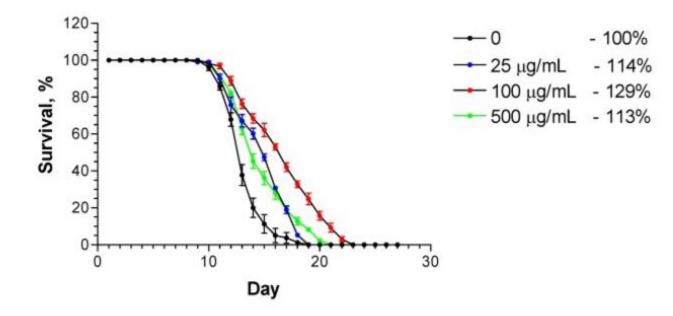
Anxiolytic ++

Why Adaptogens Work


Adaptogens are complex phenolics or tetracyclic triterpenoids/ steroids

Phenolics: Structure is similar to catecholamines which are mediators of the sympathoadrenal system (SAS) early in the stress response

Tetracyclic triterpenoids: Structurally resemble the corticosteroid stress hormones for long-term protective inactivation of the stress system


Also, the monoterpene glucoside rosiridin from Rhodiola rosea, was found to inhibit monoamine oxidases A and B which may benefit depression and senile dementia

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991026/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991026/

Can Adaptogens Extend Life?

Area under the curves,	survival % x day	s %
No treatment (control)	1,179	100
Chisan, 25 µg/mL	1,344	114
Chisan, 100 µg/mL	1,521	129
Chisan, 500 µg/mL	1,338	113

Fixed combination of *Rhodiola rosea*, *Schisandra chinensis* and *Eleutherococcus senticosus* extracts (ADAPT-232/Chisan) causes a concentration-dependant increase in life span of N2 wild-type *C*. *elegans*.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991026/

ADAPT-232

What Happens Cellularly with Stress

- Mitochondria: create oxygen-containing radicals that can damage native or repair proteins by distorting their 3-D structure
- With stressors: infection, cold, heat, radiation, physical load, emotional stress, a cascade of "signalling" proteins/enzymes (eg JNK)
- JNK: limits neuronal development, activates the immune system, and begins programmed cell death (apoptosis)

Adaptogen Cellular Response

- ADAPT-232
- Decreases NO, cortisol and JNK under stress
- Stimulate/activate the expression of Hsp70 and p-FoxO1
- With the following results:
- Enhances the repair of damaged proteins, inhibits the stress-induced expression of NO genes, inhibits JNK and consequently apoptotic death and suppression of immune system via activation of GR and other mechanisms.
- Maintains normal ATP levels the anti-fatigue and anti-depressive effects of adaptogens and with normal cognitive function (e.g., good attention, memory and learning).
- Increased long-term resistance to stress and increased life span

Effects of Chronic Stress on Humans

Brain/Spine:

- --volume reductions of some structures (such as the PFC)
- --decreased neuronal plasticity due to dendritic atrophy and neuronal death
- --decreased spine density
- --Stressed Brains and Depressed brains look morphologically similar

Immune system:

--psychological stress induces the same response as infections and causes tissue damage --increase the levels of circulating cytokines and of various biomarkers of inflammation

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137920/

Effects of Chronic Stress on Humans

Cardiovascular system:

- -stress induces the release of noradrenaline by sympathetic nerve fibers targeting blood vessels
- --promoting cell division and leukocyte mobilization into the bloodstream
- --resulting in enhanced recruitment of inflammatory cells in atherosclerotic plaques, higher levels of proteases and increased plaque fragility
- --Interestingly, beta blockers (blocking noradrenaline) limit or reverse the buildup of athelerosclerotic plaques

Joints:

Proinflammatory cytokines induced by stress

Adaptogenic activity: Exercise counteracts stress, Glandular therapy targeting the hypothalamus, pituitary, and adrenals

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5137920/