View Text

1. A Multimodal, Regenerative Approach to Traumatic Brain Injury Dr. John C. Hughes, D.O. OMED – Baltimore, MD October 25, 2019

2. Disclosure The content of this presentation has been peer reviewed for fair balance and evidence based medicine.

3. LearningObjectives Define Define the clinical, biochemical and metabolic effects from TBI Identify Identify mainstream and alternative treatments for TBI Understand Understand the regenerative model of TBI treatment

4. Clinical Symptoms from TBI Cognitive Memory decline / loss Slow reaction time Inability to pay attention Executive dysfunction Slow learning Interrupted speech Difficulty understanding Unable to concentrate Confusion Difficulty communicating thoughts Unable to plan, reason, problem-solve Physical Headache Fatigue Sleep disorders Vertigo or dizziness Tinnitus or hyperacusis Photosensitivity Anomia Reduced tolerance to psychotropic medications Disorientation Loss of mobility Seizures Loss of smell Psychological Irritability Easy frustration Tension Anxiety Affective lability Personality changes Disinhibition Apathy Suspiciousness Suicidality Depression PTSD

5. Biochemical and Physiological Responses fromTBI Disproportional proinflammatory cytokine production and release Increased counterregulatory hormones work against the action of insulin

6. Biochemical and Physiological Responses fromTBI Hypermetabolic and catabolic states Severely impaired nitrogen homeostasis Oxidative Stress

7. Oxidative Stress From TBI Impairs cerebral vascular function Impairs circulation Impairs the energy metabolism Damages mitochondria and DNA

8. What Happens Metabolically withaTBI? “The brain is in a metabolic crisis with concussion… potassium ion from inside the cell going extracellularly, calcium ions going intracellularly, neurotransmitters widely released in a chaotic manner. It takes energy to pump that potassium back, put the neurotransmitters back on so the cell can function.” Dr Robert Cantu, MD, 2013

9. What Happens Metabolically withaTBI? An Energy Crisis

10. Mainstream Treatments • Occupational and physical rehabilitation • Speech therapy • Pharmaceutical drugs • Cognitive maintenance exercises • Patients simply cope with their condition

11. Alternative Treatments • Do not seek to regenerate but rather simply treat symptoms • Do not combine regenerative treatments in a multimodal manner in order to maximize patient benefit

12. Question1 Which of the following are symptoms of a traumatic brain injury? A. Headache B. Insomnia C. Mood changes D. Cognitive and memory impairment E. Sound and light sensitivity F. All of the above

13. Question2 What is the most significant pathophysiologic reason why many TBI patients fail to recover? A. Inflammation B. Oxidative stress C. Impaired nitrogen homeostasis D. Impaired energy metabolism (“The brain is in a metabolic crisis.”)

14. It is hypothesized that the practical, effective combination of multiple regenerative TBI therapies can produce synergistic benefits to the patient that exceed the use of one particular TBI treatment. A Multimodal, Regenerative Approach to TBI

15. A Multimodal, Regenerative Approach to TBI I. Hyperbaric Oxygen Therapy II. Intranasal Therapies III. IV Nutrition IV. Cranial Osteopathy V. Ketogenic Diet and MCT Oil

16. Hyperbaric Oxygen Therapy (HBOT) for TBI Part I

17. Hyperbaric Oxygen Therapy (HBOT) • Allows the body to absorb about 10-15 times its normal supply of oxygen • Stimulates the growth of tissue, bone and blood vessels, and reduces inflammation Thom, et al., 2006

18. VolumerenderedBrain SPECTperfusion mapsof a51-year-old woman sufferingfrommTBIthat hadoccurred2yearsprior toinclusion inthestudy Boussi-Gross et al., 2013

19. HBOT for TBI • Induces neuroplasticity • Increases tissue oxygenation • Generates new capillary networks • Restores blood supply • Increases stem cells in the blood

20. Question3 How does hyperbaric oxygen help TBI patients? A. HBOT reduces neuroplasticity B. HBOT causes vasodilation C. HBOT increases tissue perfusion with new capillary growth D. HBOT creates oxidative stress

21. HBOT andStemCells • 2 hours of HBOT triples the patients own circulating stem cells • 20 sessions of HBOT increases circulating stem cells to 8 fold (800%) Thom, et al., 2006

22. MeanCD34+populationinbloodofhumansbeforeandafterHBO2treatments. Data are the fraction of CD34+ cells within the gated population using leukocytes obtained from 26 patients before and after their 1st, 10th, and 20th HBO2 treatment. Thom, et al., 2006

23. “[Hyperbaric oxygen therapy] is the safest way clinically to increase stem cell circulation, far safer than any of the pharmaceutical options.” STEPHEN THOM, MD, PH.D. (2006)

24. IntranasalTherapies (Insulin,PRP, and StemCells) forTBI Part II

25. JourneyThroughtheNose Through the olfactory nerves Bypasses the blood-brain barrier Into the CSF within 10 minutes

26. Solidarrowsrepresent thepathsofmigration ofcellsintothebrain, dashedarrowsreflect possiblehypothetical routesofcelldelivery Danielyan, et al., 2014 MouseBrain

27. Intranasal InsulinforTBI  Improves brain ATP production  Decreases CSF cortisol  Improves neuronal viability in the hippocampus  Increases the expression of anti- inflammatory microglia  Reduces beta-amyloid and tau protein deposition

28. Improved neuronal viability in the hippocampus of the insulin treated rats. Intranasal insulin increases the expression of anti- inflammatory microglia in the hippocampus Brabazon, Khayrullina, Frey, & Byrnes, 2014

29. Question4 Intranasal insulin has the following effects: A. Increases ATP production and utilization B. Decreases gliosis C. Decreases cortisol D. Reduces amyloid and tau protein deposition E. All of the above

30.  Autologous plasma contains growth factors and cytokines to aid the injured brain: VEGF, EGF increases angiogenesis PDGF, TGF-p enhance collagen growth IGF-1 stimulates protein synthesis PlateletRichPlasma(PRP)

31. PlateletRichPlasma(PRP) The infusion of concentrated platelets results in an exponential increase in numerous growth factors at the sight of infusion Plasma cytokines control inflammatory mediators cox1, cox2 and guide stem cells to areas of injury

32. Intranasal Platelet RichPlasma (PRP)forTBI • “Basic fibroblast growth factor infusion enhances injury- induced cell proliferation in the dentate gyrus and improves cognitive function in rats following fluid percussive injury.” • “Other studies have found that infusion of S100β or VEGF can also enhance neurogenesis in the hippocampus and improve the functional recovery of animals following TBI.” Sun, 2014

33. Peripheral BloodBased AdultStemCells Recently discovered in peripheral blood PLURIPOTENT adult stem cells Behave like embryonic stem cells Give rise to all the cell types Long lifespan Work in combination with PRP

34. Intranasal PeripheralBlood StemCells forTBI Have regenerative and reparative properties Adult stem cells from BMA have been used to treat ischemic brain damage by reducing gray and white matter loss (Danielyan, et al., 2014). Downregulate neuroinflammatory cytokines

35. Intranasal Nutrients for TBI IN glutathione has been used to reduce oxidative stress and enhance cellular detoxification in Parkinson’s disease patients (Mischley, et al., 2016). IN methylcobalamin has been shown to improve QEEG Theta activity in ADHD and autism patients (Kurtz, 2008).

36. Intravenous Nutrition forTBI Part III

37. IVNutrition forTBI  PRP  Adult peripheral blood stem cells  NAD+  Myer’s cocktail with potassium, magnesium, calcium, B-complex, B5, B6, and B12, ascorbate, and glutathione

38. CranialOsteopathyforTBI Part IV

39. Cranial Osteopathy for TBI • Manual manipulation of the cranial bones and membranes to allow the cerebral spinal fluid to flow properly • The central nervous system, including the brain and spinal cord, has a subtle, rhythmic pulsation

40. Cranial Osteopathy for TBI • This rhythmic pulsation can be blocked in brain injuries – impedes CSF and blood flow • Effective at treating vertigo and headaches associated with TBIs

41.  Time shift between peaks of TCD and В-Imp is determined by the replacement of some portion of CSF out from (or into) zone of В- Imp electrodes.  This time interval represents the mobility of CSF inside the cranium during the pulse cycle. Moskalenko, Frymann, Kravchenko, & Weinstein, 2003

42. Question5 TBI patients have: A. Reduced mobility of the CSF B. Increased mobility of the CSF C. Complete loss of CSF D. No change in mobility of the CSF

43. MCTOils andtheKetogenic Diet forTBI Part V

44. KetogenicDiet forTBI High-fat Adequate- protein Low- carbohydrate

45. KetogenicDiet forTBI • Grains – wheat, corn, rice, cereal, etc. • Sugar – honey, agave, maple syrup, etc. • Fruit – apples, bananas, oranges, etc. • Tubers – potato, yams, etc. DO NOT EAT • Meats (organic, pasture-raised, sustainable) • Above ground vegetables and leafy greens • High fat dairy • Nuts and seeds • Avocado and berries • Other fats – avocado oil, coconut oil, grass- fed ghee, high-fat salad dressing, saturated fats, etc. DO EAT

46. Glucose/Carbohydrates = Kindling Ketones/Fats = Logs Which burns more even?

47. Ketonesarelike diesel fuel(Glucoseislikegasoline) • Diesel fuel has a high flash point than gasoline • Harder to oxidize – Less flammable (excitable) • The brain works like a diesel engine • Burns more efficiently – lasts longer

48. Whatelsedo ketonesdo? Increases GABA Decreases Depression, Fear, Anxiety Decreases Glutamate Decreases Oxidative Stress Increases Neuroprotection Increases Calming

49.  Possible anticonvulsant effects of ketone bodies on the brain  Increased GABA synthesis  Decreased glutamate release by competitive inhibition of vesicular glutamate transporters. McNally & Hartman, 2012

50.  Increased membrane potential hyperpolarization via KATP channels  Decreased reactive oxygen species production from glutamate exposure  Electron transport chain subunit transcription McNally & Hartman, 2012

51. Neuroprotective Actionsofthe Ketogenic Diet Upregulates energy metabolism genes Stimulates of mitochondrial biogenesis Promotes synthesis of ATP Limits glutamate toxicity

52. The TBI Therapy Protocol

53. TBITherapyHBOTProtocol Medical Grade HBOT 10 – 20 before and after treatment Home HBOT Chamber 5 – 7 days/wk 1 month before treatment 5 – 7 days/wk 2 – 9 months after treatment

54. Consultation Cranial osteopathy HBOT IV PRP + Nutrition IN PRP + Insulin Day 1: IV pluripotent stem cells (VESLs) from the blood + NAD IN pluripotent stem cells (VESLs) from the blood HBOT Day 2: TBI Therapy 2-Day Program

55. Consultation IV therapy Cranial osteopathy HBOT Day 1: HBOT IV PRP + Nutrition IN PRP + Insulin Day 2: IV pluripotent stem cells (VESLs) from the blood + NAD IN pluripotent stem cells (VESLs) from the blood HBOT Day 3: TBI Therapy 3-Day Program

56. CaseReport1:46year-oldmale Before Treatment: • Memory loss • Depression and anxiety • Emotionally unstable • Headaches daily • Inability to carry on conversation • Inability to do math or read • Light and sound sensitivity • Could not drive • Insomnia After Treatment: • “Memory download” • “An awakening” • Mood and personality improvements • Improvements intellectually, physiologically, and psychologically • Improved ability to read • Able to turn on lights /electronics • Able to drive • Sleep normalized

57. TBITherapy: CaseReport1 “It was like a stream of information had been let loose… I felt for the first time in a year that I had some clarity. I was excited and able to read more than 2-3 sentences without triggering a migraine… The ability to think and plan returned.”

58. CaseReport2:30year-oldfemale Before Treatment: • Insomnia • Mood swings • Depression • Unable to work • Head pressure • Sound and light sensitivity After Treatment: • Able to travel and work • Light and sound sensitivity decreased • Improved mood • Less fatigued • Relief from anxiety

59. TBITherapy: CaseReport2 “I felt well enough that I started saying yes again. TBI Therapy has turned me into a TBI THRIVER, not just a survivor. I’m happy. I enjoy life again, can travel and am doing work in the world that’s more aligned with myself than ever.”

60. CaseReport3:48year-oldfemale Before Treatment: • Anger • Depression • Suicidal ideation • Anosmia • Extreme mental fatigue • PTSD After Treatment: • Calm • No longer “reactive” and irritable • Confident • No thoughts of suicide • Feeling of less inflammation • Improved memory • Improved sense of smell

61. TBITherapy: CaseReport3 “The results for me have been are nothing short of MIRACULOUS! Popeye may have his spinach but I have stem cells and PRP! Yes, my brain is strong!”

62. CaseReport4:36year-oldmalevet– bombtech Before Treatment: • Headache • Insomnia • Suicide ideation • PTSD • Depression • Fatigue • Chronic pain After Treatment: • No headaches • Improved sleep • No suicidal thoughts • More energy • Able to exercise • Less pain

63. Outof100patientstreated,nearlyeverypatientreports: More mental clarity Improved memory Improved executive function/decision making More stable emotions and less stress Better ability to cope with pain More physical and mental energy

64. Outof100patientstreated,somepatientsreport: Less sound and light sensitivity Improved eyesight Improved sleep and libido Improved motor function (ability to open a clenched fist, ability to walk) Less muscle spasticity

65. Conclusion: The Multimodal, Regenerative Approach is a Superior Way to Treat TBI The practical, effective combination of multiple regenerative TBI therapies can produce synergistic benefits to the patient superior to mainstream TBI or single modality TBI treatments.

66. Treats TBI patients by combining regenerative therapies: HBOT, stem cells, PRP, and nutritional therapies. Treats chronic pain and major medical problems using modern and natural medicine.

67. References Boussi-Gross, R., Golan, H., Fishlev, G., Bechor, Y., Volkov, O., et al. (2013) Hyperbaric Oxygen Therapy Can Improve Post Concussion Syndrome Years after Mild Traumatic Brain Injury – Randomized Prospective Trial. PLoS ONE 8(11): e79995. doi: 10.1371/journal.pone.0079995. Brabazon, F. P., Khayrullina, G. I., Frey, W. H., & Byrnes, K. R. (2014, June). INTRANASAL INSULIN TREATMENT OF TRAUMATIC BRAIN INJURY. In JOURNAL OF NEUROTRAUMA (Vol. 31, No. 12, pp. A106-A106). 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA: MARY ANN LIEBERT, INC. Cantu, R. (August, 2013). What Physical and Cognitive Rest Really Mean After a Concussion. Retrieved from Danielyan, L., Beer-Hammer, S., Stolzing, A., Schäfer, R., Siegel, G., Fabian, C., … & Novakovic, A. (2014). Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer’s and Parkinson’s disease. Cell transplantation,23(1), S123-S139. European Society of Endocrinology. (2010). Vitamin D deficiency associated with chronic fatigue in brain injured patients. ScienceDaily. Retrieved August 15, 2016 from Gladstone Institutes. (2008). Collagen May Help Protect Brain Against Alzheimer’s Disease. ScienceDaily. Retrieved August 15, 2016 from Gunther, N. & Queen, E. (2013). What Physical and Cognitive Rest Really Mean After a Concussion. Brainline. Retrieved from Haller, H., Cramer, H., Werner, M., & Dobos, G. (2015). Treating the sequelae of postoperative meningioma and traumatic brain injury: a case of implementation of craniosacral therapy in integrative inpatient care. The Journal of Alternative and Complementary Medicine, 21(2), 110-112. Huskisson, E., Maggini, S., & Ruf, M. (2007). The role of vitamins and minerals in energy metabolism and well-being. Journal of international medical research, 35(3), 277-289. Kurtz, S. (2008). U.S. Patent Application No. 12/077,296. Retrieved August 15, 2016 from McNally, M. A., & Hartman, A. L. (2012). Ketone bodies in epilepsy. Journal of neurochemistry, 121(1), 28-35. Mischley, L. K., Conley, K. E., Shankland, E. G., Kavanagh, T. J., Rosenfeld, M. E., Duda, J. E., … & Padowski, J. M. (2016). Central nervous system uptake of intranasal glutathione in Parkinson’s disease. npj Parkinson’s Disease, 2, 16002. Moskalenko, Y., Frymann, V., Kravchenko, T., & Weinstein, G. (2003). Physiological background of the Cranial Rhythmic Impulse and the Primary respiratory Mechanism. Am Acad Osteopath J, 13(2), 21-33. Rho, J. M., & Stafstrom, C. E. (2012). The ketogenic diet as a treatment paradigm for diverse neurological disorders. Frontiers in pharmacology, 3, 59. Sun, D. (2014). The potential of endogenous neurogenesis for brain repair and regeneration following traumatic brain injury. Neural regeneration research, 9(7), 688.). Thom, S. R., Bhopale, V. M., Velazquez, O. C., Goldstein, L. J., Thom, L. H., & Buerk, D. G. (2006). Stem cell mobilization by hyperbaric oxygen. American Journal of Physiology-Heart and Circulatory Physiology, 290(4), H1378-H1386. Tithon Biotech (n.d.). Retrieved from UHN Staff. (2015). Vitamins for Memory Loss and Stroke Prevention – These 3 Are Critical. University Health News Daily. Retrieved August 15, 2016 from Van Velthoven, C. T., Kavelaars, A., van Bel, F., & Heijnen, C. J. (2010). Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatric research, 68, 419-422.