Call for a consultation 888-489-6665 or 970-927-0466 info@tbitherapy.com

Hyperbaric Oxygen Therapy

Boussi-Gross, R., Golan, H., Fishlev, G., Bechor, Y., Volkov, O., et al. (2013) Hyperbaric Oxygen Therapy Can Improve Post Concussion Syndrome Years after Mild Traumatic Brain Injury – Randomized Prospective Trial. PLoS ONE 8(11): e79995. doi: 10.1371/journal.pone.0079995.

Efrati, S., Fishlev, G., Bechor, Y., Volkov, O., Bergan, J., Kliakhandler, K., … & Golan, H. (2013). Hyperbaric oxygen induces late neuroplasticity in post stroke patients-randomized, prospective trial. PloS one, 8(1), e53716.

Efrati, S., & Ben-Jacob, E. (2014). Reflections on the neurotherapeutic effects of hyperbaric oxygen. Expert review of Neurotherapeutics,14(3), 233-236.

Fattori, B., Nacci, A., Casani, A., Donati, C., & De Iaco, G. (2001). [Oxygen therapy in the long term treatment of Meniere’s disease]. Acta otorhinolaryngologica Italica: organo ufficiale della Societa italiana di otorinolaringologia e chirurgia cervico-facciale, 21(1), 1-9.

Figueroa, X. A., & Wright, J. K. (2016). Hyperbaric oxygen B-level evidence in mild traumatic brain injury clinical trials. Neurology, 87(13), 1400-1406.

Hadanny, A., Golan, H., Fishlev, G., Bechor, Y., Volkov, O., Suzin, G., … & Efrati, S. (2015). Hyperbaric oxygen can induce neuroplasticity and improve cognitive functions of patients suffering from anoxic brain damage.Restorative neurology and neuroscience, 33(4), 471-486.

Harch, P. G., Andrews, S. R., Fogarty, E. F., Lucarini, J., & Van Meter, K. W. (2017). Case control study: hyperbaric oxygen treatment of mild traumatic brain injury persistent post-concussion syndrome and post-traumatic stress disorder. Medical Gas Research7(3), 156–174. http://doi.org/10.4103/2045-9912.215745

Harch, P. G., Andrews, S. R., Fogarty, E. F., Amen, D., Pezzullo, J. C., Lucarini, J., … & Van Meter, K. W. (2012). A phase I study of low-pressure hyperbaric oxygen therapy for blast-induced post-concussion syndrome and post-traumatic stress disorder. Journal of neurotrauma, 29(1), 168-185.

Hardy, P., Johnston, K. M., De Beaumont, L., Montgomery, D. L., Lecomte, J. M., Soucy, J. P., … & Lassonde, M. (2007). Pilot case study of the therapeutic potential of hyperbaric oxygen therapy on chronic brain injury.Journal of the neurological sciences, 253(1), 94-105.

Hu, Q., Manaenko, A., Xu, T., Guo, Z., Tang, J., & Zhang, J. H. (2016). Hyperbaric oxygen therapy for traumatic brain injury: bench-to-bedside. Medical Gas Research6(2), 102–110. http://doi.org/10.4103/2045-9912.184720

Huang, L., & Obenaus, A. (2011). Hyperbaric oxygen therapy for traumatic brain injury. Medical Gas Research1, 21. http://doi.org/10.1186/2045-9912-1-21.

Rockswold, S. B., Rockswold, G. L., Zaun, D. A., Liu, J. (2013). A prospective, randomized Phase II clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury. Journal of Neurosurgery. 8(6):1317-28. doi: 10.3171/2013.2.JNS121468.

Sahni, T., Jain, M., Prasad, R., Sogani, S. K., & Singh, V. P. (2012). Use of hyperbaric oxygen in traumatic brain injury: Retrospective analysis of data of 20 patients treated at a tertiary care centre. British journal of neurosurgery,26(2), 202-207.

Shi, X. Y., Tang, Z. Q., Sun, D., & He, X. J. (2006). Evaluation of hyperbaric oxygen treatment of neuropsychiatric disorders following traumatic brain injury. CHINESE MEDICAL JOURNAL-BEIJING-ENGLISH EDITION-,119(23), 1978.

Stoller, K. P. (2011). # Hyperbaric oxygen therapy (1.5 ATA) in treating sports related TBI/CTE: two case reports. Medical gas research, 1(1), 1-6.

Tal, S., Hadanny, A., Sasson, E., Suzin, G., & Efrati, S. (2017). Hyperbaric oxygen therapy can induce angiogenesis and regeneration of nerve fibers in traumatic brain injury patients. Frontiers in Human Neuroscience11, 508.

Tal, S., Hadanny, A., Berkovitz, N., Sasson, E., Ben-Jacob, E., & Efrati, S. (2015). Hyperbaric oxygen may induce angiogenesis in patients suffering from prolonged post-concussion syndrome due to traumatic brain injury. Restorative Neurology and Neuroscience. 33(6):943-51. doi: 10.3233/RNN-150585.

Thom, S. R., Bhopale, V. M., Velazquez, O. C., Goldstein, L. J., Thom, L. H., & Buerk, D. G. (2006). Stem cell mobilization by hyperbaric oxygen. American Journal of Physiology-Heart and Circulatory Physiology290(4), H1378-H1386.

Weil, L., Kol, C. P., Sul, K., & Chiu, W. T. (2008). Effect of hyperbaric oxygen on patients with traumatic brain injury. Acta Neurochirurgica Supplements Editor: H.-J. Steiger, 101, 145-149.

Wright, J. K., Zant, E., Groom, K., Schlegel, R. E., & Gilliland, K. (2009). Case report: treatment of mild traumatic brain injury with hyperbaric oxygen.

Intranasal Platelet Rich Plasma and Insulin

Anitua, E., Tejero, R., Alkhraisat, M. H., & Orive, G. (2013). Platelet-rich plasma to improve the bio-functionality of biomaterials. BioDrugs, 27(2), 97-111. doi: 10.1007/s40259-012-0004-3

Benedict, C., Hallschmid, M., Hatke, A., Schultes, B., Fehm, H., Born, J., & Kern, W. (2004). Intranasal insulin improves memory in humans. Psychoneuroendocrinology, 29: 1326-133. doi:10.1016/j.psyneuen.2004.04.003.

Benedict, C., Frey, W., Schiöth, H., Schultes, B., Born, J., & Hallschmid, M. (2011). Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Experimental Gerontolgy, 46: 112-115. doi:10.1016/j.exger.2010.08.026.

Benedict, C., Hallschmid, M., Schmitz, K., Schultes, B., Ratter, F., Fehm, H., Born, J., & Kern, W. (2007). Intranasal Insulin Improves Memory in Humans: Superiority of Insulin Aspart. Neuropsychopharmacology, 32: 239-243. doi:10.1038/sj.npp.1301193.

Brabazon, F. P., Khayrullina, G. I., Frey, W. H., & Byrnes, K. R. (2014, June). INTRANASAL INSULIN TREATMENT OF TRAUMATIC BRAIN INJURY. In JOURNAL OF NEUROTRAUMA (Vol. 31, No. 12, pp. A106-A106). 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA: MARY ANN LIEBERT, INC.

Brain healing. (n.d.). Retrieved from https://en.wikipedia.org/wiki/Brain_healing.

Chua, L. M., Lim, M. L., Chong, P. R., Hu, Z. P., Cheung, N. S., & Wong, B. S. (2012). Impaired neuronal insulin signaling precedes Aβ42 accumulation in female AβPPsw/PS1ΔE9 mice. Journal of alzheimer’s disease, 29(4), 783-791. doi 10.3233/JAD-2012-111880.

Craft, S., Baker, L. D., Montine, T. J., Minoshima, S., Watson, G. S., Claxton, A., … & Green, P. S. (2012). Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment. Archives of neurology, 69(1), 29-38. doi:10.1001/archneurol.2011.233.

Dhuria, S., Hanson, L., & Frey, H. (2009). Intranasal Delivery to the Central Nervous System: Mechanisms and Experimental Considerations. Journal of Pharmaceutical Sciences. 99(4): 1654-1673. doi10.1002/jps.21924.

Donahue, D. L., Beck, J., Fritz, B., Davis, P., Sandoval-Cooper, M., Thomas, S. G., . . . Castellino, F. J. (2014). Early platelet dysfunction in a rodent model of blunt traumatic brain injury reflects the acute traumatic coagulopathy found in humans. Journal of Neurotrauma, 31(4), 404-410. doi: 10.1089/neu.2013.3089

Fransson, M., Piras, E., Burman, J., Nilsson, B., Essand, M., Lu, B., … & Loskog, A. S. (2012). CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J Neuroinflammation, 9(1), 112.

Frey, W. H. (2013). Intranasal insulin to treat and protect against posttraumatic stress disorder. The Journal of nervous and mental disease,201(7), 638-639.

Gladstone Institutes. (2008, December 10). Collagen May Help Protect Brain Against Alzheimer’s Disease. ScienceDaily. Retrieved March 2, 2016 from www.sciencedaily.com/releases/2008/12/081210150713.htm.

Hanson, L. R., & Frey, W. H. (2008). Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC neuroscience, 9(Suppl 3), S5.

Johnson, V. E., Stewart, W., & Smith, D. H. (2010). Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nature Reviews. Neuroscience, 11(5), 361–370. http://doi.org/10.1038/nrn2808.

Mischley, L. K., Conley, K. E., Shankland, E. G., Kavanagh, T. J., Rosenfeld, M. E., Duda, J. E., … & Padowski, J. M. (2016). Central nervous system uptake of intranasal glutathione in Parkinson’s disease. npj Parkinson’s Disease, 2, 16002.

Middleton, K. K., Barro, V., Muller, B., Terada, S., & Fu, F. H. (2012). Evaluation of the Effects of Platelet-Rich Plasma (PRP) Therapy Involved in the Healing of Sports-Related Soft Tissue Injuries. The Iowa Orthopaedic Journal, 32, 150–163.

Mischley, L. K., Conley, K. E., Shankland, E. G., Kavanagh, T. J., Rosenfeld, M. E., Duda, J. E., … & Padowski, J. M. (2016). Central nervous system uptake of intranasal glutathione in Parkinson’s disease. npj Parkinson’s Disease, 2, 16002.

Reger, M. A., Watson, G. S., Frey, W. H., Baker, L. D., Chloreton, B., Keeling, M. L. et al. (2006). Effects of intranasal insulin on cognition in memory-impaired older adults: Modulation by APOE genotype. Neurobiology of Againg 451-458. doi:10.1016/j.neurobiolaging.2005.03.016

Reger, M. A., Watson, G. S., Green, P. S., Wilkinson, C. W., Baker, L. D., et al (2008). Intranasal insulin improves cognition and modulates -amyloid in early AD. Departments of Psychiatry and Behavioral Science, Medicine, and Neurology. 

Reger, M. A., Watson, G. S., Green, P. S., Baker, L. D., Cholerton, B., Fishel, M. A., … Craft, S. (2008). Intranasal Insulin Administration Dose-Dependently Modulates Verbal Memory and Plasma β-Amyloid in Memory-Impaired Older Adults. Journal of Alzheimer’s Disease : JAD, 13(3), 323–331.

Roggendorf, W., Opitz, H., & Schuppan, D. (1988). Altered expression of collagen type VI in brain vessels of patients with chronic hypertension. Acta Neuropathologica Acta Neuropathol, 77(1), 55-60.

Schiöth, H. B., Craft, S., Brooks, S. J., Frey II, W. H., & Benedict, C. (2012). Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Molecular neurobiology, 46(1), 4-10. doi 10.1007/s12035-011-8229-6.

Sun, D. (2014). The potential of endogenous neurogenesis for brain repair and regeneration following traumatic brain injury. Neural regeneration research, 9(7), 688.

Zhang, Y., Ying, G., Ren, C., Jizhang, Y., Brogan, D., Liu, Z., . . . Ji, X. (2015). Administration of human platelet-rich plasma reduces infarction volume and improves motor function in adult rats with focal ischemic stroke. Brain Research, 1594, 267-273.

Zhang, J., Jiang, R., Liu, L., Watkins, T., Zhang, F., & Dong, J. (2012). Traumatic brain injury-associated coagulopathy. Journal of Neurotrauma, 29(17), 2597-2605. doi: 10.1089/neu.2012.2348

Intranasal Adult Stem Cells

Balyasnikova, I. V., Prasol, M. S., Ferguson, S. D., Han, Y., Ahmed, A. U., Gutova, M., … & Aboody, K. S. (2013). Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors. Molecular Therapy.

Cox, C. S., Hetz, R. A., Liao, G. P., Aertker, B. M., Ewing‐Cobbs, L., Juranek, J., … & Dash, P. K. (2016). Treatment of severe adult traumatic brain injury using bone marrow mononuclear cells. Stem Cells.

Danielyan, L., Schäfer, R., von Ameln-Mayerhofer, A., Buadze, M., Geisler, J., Klopfer, T., … & Buniatian, G. H. (2009). Intranasal delivery of cells to the brain. European journal of cell biology, 88(6), 315-324.

Danielyan, L., Beer-Hammer, S., Stolzing, A., Schäfer, R., Siegel, G., Fabian, C., … & Novakovic, A. (2014). Intranasal delivery of bone marrow-derived mesenchymal stem cells, macrophages, and microglia to the brain in mouse models of Alzheimer’s and Parkinson’s disease. Cell transplantation,23(Supplement 1), S123-S139.

Danielyan, L., Schäfer, R., von Ameln-Mayerhofer, A., Bernhard, F., Verleysdonk, S., Buadze, M., … & Koehle, C. (2011). Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation research, 14(1), 3-16.

Fransson, M., Piras, E., Burman, J., Nilsson, B., Essand, M., Lu, B., … & Loskog, A. S. (2012). CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. Journal of neuroinflammation, 9(1), 112.

Gargiulo, C., Pham, V. H., Nguyen, K. C. D., Trieu, V. L. H., & Duy, T. H. (2016). Autologous Peripheral Blood Stem Cells Increase the Telomere Length in Patient: A Case Report of 13 Patients. J Stem Cell Res Ther6(352), 2.

Hanson, L. R., & Frey, W. H. (2008). Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC neuroscience9(Suppl 3), S5.

Henson, N. L., Heaton, M. L., Holland, B. H., Hawkins, K. C., Rawlings, B. A., Eanes, E. A., … & Peebles, B. G. (2005). Karyotypic analysis of adult pluripotent stem calls. Histology and histopathology20(3), 769-784.

Johnson, V. E., Stewart, W., & Smith, D. H. (2010). Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nature Reviews. Neuroscience11(5), 361–370. http://doi.org/10.1038/nrn2808.

Liao, G. P., Harting, M. T., Hetz, R. A., Walker, P. A., Shah, S. K., Corkins, C. J., … & Tsao, K. (2015). Autologous bone marrow mononuclear cells reduce therapeutic intensity for severe traumatic brain injury in childrenPediatric critical care medicine: a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies16(3), 245.

Ratajczak, M. Z., Zuba-Surma, E. K., Wysoczynski, M., Ratajczak, J., & Kucia, M. (2008). Very small embryonic-like stem cells: characterization, developmental origin, and biological significance. Experimental hematology36(6), 742-751.

Roggendorf, W., Opitz, H., & Schuppan, D. (1988). Altered expression of collagen type VI in brain vessels of patients with chronic hypertensionActa Neuropathologica Acta Neuropathol, 77(1), 55-60.

Sovalat, H., Scrofani, M., Eidenschenk, A., & Hénon, P. (2015). Human very small embryonic-like stem cells are present in normal peripheral blood of young, middle-aged, and aged subjects. Stem cells international2016.

van Velthoven, C. T., Kavelaars, A., van Bel, F., & Heijnen, C. J. (2010). Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatric research, 68, 419-422.

Wei, L. (2018). Stem cell transplantation therapy via intranasal delivery after strokeEmory University, Atlanta, GA.

Wei, N., Yu, S. P., Gu, X., Taylor, T. M., Song, D., Liu, X. F., & Wei, L. (2013). Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell transplantation,22(6), 977-991.

William, H. F. I., Danielyan, L., & Gleiter, C. H. (2016). U.S. Patent No. 9,445,991. Washington, DC: U.S. Patent and Trademark Office.

Young, H. E., & Black, A. C. (2005). Differentiation potential of adult stem cells. In Stem Cells in Endocrinology (pp. 67-92). Humana Press.

Young, H. E., Duplaa, C., Katz, R., Thompson, T., Hawkins, K. C., Boev, A. N., … & Stout, C. (2005). Adult‐derived stem cells and their potential for use in tissue repair and molecular medicine. Journal of cellular and molecular medicine9(3), 753-769.

Zhang, J., Jiang, R., Liu, L., Watkins, T., Zhang, F., & Dong, J. (2012). Traumatic brain injury-associated coagulopathy. Journal of Neurotrauma, 29(17), 2597-2605. doi: 10.1089/neu.2012.2348

Zhao, Y., Glesne, D., & Huberman, E. (2003). A human peripheral blood monocyte-derived subset acts as pluripotent stem cells. Proceedings of the National Academy of Sciences100(5), 2426-2431.

Cranial Osteopathy

Barke, L., Gelman, S., & Lipton, J. A. (1997). A successful use of cranial-sacral osteopathy in the treatment of post-traumatic headache following subarachnoid hemorrhage. Am Acad Osteopathy J, 22-23.

Craniosacral Therapy. (2011). Physiotherapy & Occupational Therapy Journal, 4(1), 21-23.

Greenman, P. E., & McPartland, J. M. (1995). Cranial findings and iatrogenesis from craniosacral manipulation in patients with traumatic brain syndrome. The Journal of the American Osteopathic Association, 95(3), 182-8.

Haller, H., Cramer, H., Werner, M., & Dobos, G. (2015). Treating the Sequelae of Postoperative Meningioma and Traumatic Brain Injury: A Case of Implementation of Craniosacral Therapy in Integrative Inpatient Care. Journal Of Alternative & Complementary Medicine, 21(2), 110-112. doi:10.1089/acm.2013.0283

Helmholtz Zentrum München – German Research Center for Environmental Health. (2018, May 18). Flow of cerebrospinal fluid regulates neural stem cell division. ScienceDaily. Retrieved July 2, 2018 from www.sciencedaily.com/releases/2018/05/180518102741.htm

Kozminski, M. (2010). Combat-Related Posttraumatic Headache: Diagnosis, Mechanisms of Injury, and Challenges to TreatmentMADIGAN ARMY MEDICAL CENTER TACOMA WA.

Leder, A., & Yao, S. (2016). Resolution of concussion symptoms after osteopathic manipulative treatment: a case report. The Journal, 116(3), e13.

McCallister, A., Brown, C., Smith, M., Ettlinger, H., & Baltazar, G. A. (2016). Osteopathic manipulative treatment for somatic dysfunction after acute severe traumatic brain injury. Journal of the American Osteopathic Association, 116(12), 810-815.

Moskalenko, Y., Frymann, V., Kravchenko, T., & Weinstein, G. (2003). Physiological Background of the Cranial Rhythmic Impulse and The Primary Respiratory Mechanism. 

Patel KG, Sabini RC. Safety of Osteopathic Cranial Manipulative Medicine as an Adjunct to Conventional Postconcussion Symptom Management: A Pilot Study. J Am Osteopath Assoc 2018;. doi: 10.7556/jaoa.2018.061.

Cellular Nutrition

Blaylock, R. L., & Maroon, J. (2011). Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy—a unifying hypothesis. Surgical neurology international2.

Benito-Ruiz, et al. (2009). International Journal of Food Sciences and Nutrition.Volume 60, Supplement 2.

Davis, L. M., Pauly, J. R., Readnower, R. D., Rh, J. M., & Sullivan, P. G. (2008). Fasting is neuroprotective following traumatic brain injury. Journal of Neuroscience Research. 86(8), 1812-22. doi: 10.1002/jnr.21628.

European Society of Endocrinology. (2010). Vitamin D deficiency associated with chronic fatigue in brain injured patients. ScienceDaily. Retrieved August 15, 2016 from www.sciencedaily.com/releases/2010/04/100427182609.htm

Fadini, et al. (2007). Glucose tolerance is negatively associated with circulating progenitor cell levels. Diabetologia, 50(10), 2156-2163.

Gasior, M., Rogawski, M. A., & Hartman, A. L. (2006). Neuroprotective and disease-modifying effects of the ketogenic diet. Behavioural pharmacology17(5-6), 431.

Geerlings, Hoepelma (1999). Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunology and Medical Microbiology,26, 259-265.

Greco, T., Glenn, T. C., Hovda, D. A., & Prins, M. L. (2016). Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activityJournal of Cerebral Blood Flow & Metabolism36(9), 1603-1613.

Hankenson, et al. (2000). Omega-3 Fatty Acids Enhance Ligament Fibroblast Collagen Formation in Association with Changes in Interleukin-6 Production. Proceedings of the Society for Experimental Biology and Medicine, 223(1), 88-95.

Huskisson, E., Maggini, S., & Ruf, M. (2007). The role of vitamins and minerals in energy metabolism and well-being. Journal of international medical research, 35(3), 277-289.

McNally, M. A., & Hartman, A. L. (2012). Ketone bodies in epilepsyJournal of neurochemistry121(1), 28-35.

Oreffo, et al. (n.d.) Maternal protein deficiency affects mesenchymal stem cell activity in the developing offspring. Bone, 33(1), 100-107.

Peterkofsky, B. (1991). Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy. Am J Clin Nutr, 54(6), 1135S-1140S.

Pillsbury, L., Oria, M., & Erdman, J. (Eds.). (2011). Nutrition and traumatic brain injury: improving acute and subacute health outcomes in military personnel. National Academies Press.

Rho, J. M., & Stafstrom, C. E. (2012). The ketogenic diet as a treatment paradigm for diverse neurological disorders. Frontiers in pharmacology, 3, 59.

Rhyu, H. S., Cho, S. Y., & Roh, H. T. (2014). The effects of ketogenic diet on oxidative stress and antioxidative capacity markers of Taekwondo athletes. Journal of exercise rehabilitation10(6), 362.

Stafstrom, C. E., & Rho, J. M. (2012). The Ketogenic Diet as a Treatment Paradigm for Diverse Neurological Disorders. Frontiers in Pharmacology, 3, 59. http://doi.org/10.3389/fphar.2012.00059.

Sullivan, P. G., Rippy, N. A., Dorenbos, K., Concepcion, R. C., Agarwal, A. K., & Rho, J. M. (2004). The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Annals of neurology55(4), 576-580.

Toklu, H. Z., & Tümer, N. (2015). Oxidative stress, brain edema, blood–brain barrier permeability, and autonomic dysfunction from traumatic brain injury.

UHN Staff. (2015). Vitamins for Memory Loss and Stroke Prevention – These 3 Are Critical. University Health News Daily. Retrieved August 15, 2016 from http://universityhealthnews.com/daily/memory/vitamins-for-memory-loss-and-stroke-prevention-these-3-are-critical/

Yu, J., Sun, M., Chen, Z., Lu, J., Liu, Y., Zhou, L., … & Chui, D. (2010). Magnesium modulates amyloid-β protein precursor trafficking and processingJournal of Alzheimer’s Disease20(4), 1091-1106.

Koyama, T., Kuriyama, N., Ozaki, E., Matsui, D., Watanabe, I., Miyatani, F., … & Yoshida, T. (2016). Serum albumin to globulin ratio is related to cognitive decline via reflection of homeostasis: a nested case-control study. BMC neurology16(1), 253.

Morley, W. A. (2018). Environmental Subconcussive Injury, Axonal Injury, and Chronic Traumatic Encephalopathy. Frontiers in neurology9, 166.

Russo, M. V., & McGavern, D. B. (2017). Distinct Myeloid Cell Subsets Promote Angiogenesis and Damaged Tissue Clearance Following Mild Traumatic Brain Injury.